Dynamic Event Tree Analysis as a Tool for Risk Assessment in Nuclear Fusion Plants Using RAVEN and MELCOR
نویسندگان
چکیده
In the broad framework of nuclear power plants (NPPs) industry, dynamic probabilistic risk assessment could answer time dependence deficiency event tree and fault analysis. The basic approach relies on experts’ pre-constructed accident sequences without exploring time-dependent nature an scenario, which strongly affect sequence. Conversely, effects events timing can be studied by adopting a (DET) approach. Developing DET methodology requires integrating system code capable replicating scenario logic-driver able to generate sequence, trigger plant safety systems, manage other relevant throughout simulation. For this purpose, Methods for Estimation Leakages Consequences Release (MELCOR) reactor analysis virtual control environment (RAVEN) have been coupled through Python script developed Sapienza University Rome, Italy, perform studies during transients in fusion fission reactors. RAVEN is software tool at Idaho National Laboratory (INL), Falls, ID, USA, act as logic driver post-processing different applications. MELCOR fully integrated design basis severe that simulates thermal-hydraulic behavior self-consistently accounting aerosol transport facilities cooling systems evaluation source term coupling between these codes will provide wide range NPP analyses, establishing new best practices. work, preliminary study has performed, selecting initiating ex-vessel loss coolant (LOCA) water-cooled lithium lead test blanket (WCLL TBS) tested International Thermonuclear Experimental Reactor (ITER). Time-dependent parameters such intervention plasma shutdown closure main isolation valves sampled evolving scenarios.
منابع مشابه
Raven as a Tool for Dynamic Probabilistic Risk Assessment: Software Overview
RAVEN is a software tool under development at the Idaho National Laboratory (INL) that acts as the control logic driver and post-processing tool for the newly developed Thermo-Hydraylic code RELAP7. The scope of this paper is to show the software structure of RAVEN and its utilization in connection with RELAP-7. A short overview of the mathematical framework behind the code is presented along w...
متن کاملdiagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولHYBRID DYNAMIC EVENT TREE SAMPLING STRATEGY IN RAVEN CODE A.Alfonsi**,
The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification and data mining analysis. RAVEN is currently equipped with three different sampling strategies: Once-through samplers (Monte Carlo, Latin Hyper Cub...
متن کاملassessment of the effect of honey as a topical therapy for intra oral wound healing in rat.
چکیده ندارد.
15 صفحه اولthe effect of using learning logs as a self-assessment tool on the syntactic development among iranian pre-intermediate efl learners
چکیده: هدف از انجام این پژوهش ،بررسی استفاده از یادداشتهای یادگیری به عنوان یکی از ابزار های خود ارزشیابی بر افزایش مهارت دستوری (صورتهای شرطی و مجهول) زبان آموزان در مقطع پیش متوسطه بوده است .بدین منظور یک تست استاندارد در مقطع پیش متوسطه بین 90 نفر زبان آموز در سنین 15 تا 20 سال در آموزشگاه زبان انگلیسی امین و پارسا در شهرستان شاهرود برگزار شد از میان این افراد 60 فراگیر انتخاب شدند. و این 6...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Plasma Science
سال: 2022
ISSN: ['0093-3813', '1939-9375']
DOI: https://doi.org/10.1109/tps.2022.3165170